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SUMMARY
We have formulated a 3-D inverse solution for the magnetotelluric (MT) problem
using the non-linear conjugate gradient method. Finite difference methods are used to
compute predicted data efficiently and objective functional gradients. Only six forward
modelling applications per frequency are typically required to produce the model update
at each iteration. This efficiency is achieved by incorporating a simple line search
procedure that calls for a sufficient reduction in the objective functional, instead of an
exact determination of its minimum along a given descent direction. Additional efficiencies
in the scheme are sought by incorporating preconditioning to accelerate solution
convergence. Even with these efficiencies, the solution’s realism and complexity are still
limited by the speed and memory of serial processors. To overcome this barrier, the
scheme has been implemented on a parallel computing platform where tens to thousands
of processors operate on the problem simultaneously. The inversion scheme is tested
by inverting data produced with a forward modelling code algorithmically different
from that employed in the inversion algorithm. This check provides independent
verification of the scheme since the two forward modelling algorithms are prone to
different types of numerical error.

Key words: 3-D magnetotelluric modelling, inversion, non-linear conjugate gradients,
preconditioning.

The solution of the 3-D MT inverse problem is non-trivial
INTRODUCTION

because it is non-linear and very large in scale. It is also
extremely ill posed due to the insufficient amounts of data thatAn outstanding problem in the interpretation of 3-D magneto-
are typically collected. In an ill-posed problem non-physical-telluric (MT) data sets has been the lack of robust and
based models can be found that produce acceptable fits betweencomputationally efficient 3-D inversion schemes. Whilst 3-D
the observations and predicted data. Fortunately, the ill-posedforward modelling can be applied to these types of data sets,
nature of the problem can be addressed using regularizationit is often too cumbersome to use for trial and error fitting of
techniques with constraints, but the large scale difficultythe observed data. Consequently, the interpretation of MT
remains. Thousands of data points are required and thousandssounding data arising from 3-D geological settings has typically
to tens of thousands of model parameters must be estimatedbeen based on 2-D approximations. Trial and error 2-D

forward modelling fitting is sometimes used, but inversion in order to render an accurate 3-D map of the subsurface
conductivity. In such an inverse problem it can be com-methods are preferred because of their robustness, speed and

ability to assess model uncertainties. A variety of 2-D inversion putationally prohibitive to form and solve repeatedly with
direct methods a full least-squares system matrix to determinemethods are available to the MT practitioner, including sharp-

boundary and minimum-structure schemes (Smith et al. 1999; the model update. Because of these difficulties, Smith & Booker
(1991) promoted a rapid relaxation technique for imaging 3-DRodi & Mackie 2000; Smith & Booker 1991; deGroot-Hedlin

& Constable 1990; Smith 1988). In many instances accurate MT data sets. The method approximates horizontal derivatives
of the MT fields with their values calculated from the fields ofinterpretation of 3-D geology can be achieved by the careful

application of 2-D modelling and inversion (cf. Wannamaker the previous inversion iteration. This simplification uncouples
the 3-D problem into a set of 1-D inverse problems, whichet al. 1984). In other instances it may not, particularly in areas

of highly complex 3-D geology. can be quickly solved. Unfortunately, this simplification ignores
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3-D magnetotelluric inversion 411

lateral effects in the computation of the data sensitivities, which We will develop the solution by first discussing the solution of

the forward problem, which will be used to compute predictedcan be significant in three dimensions, and can produce
data and functional gradients. The mathematical formulationartefacts in the reconstructed conductivity.
for solving the inverse problem will follow and will include aViable techniques to deal with the fully coupled inverse
discussion on preconditioning. A critical test of the inversionproblem, which included full treatment of lateral 3-D effects,
scheme will then be presented by inverting data produced withoriginated with the pioneering work of Mackie & Madden
a forward modelling code that differs substantially from that(1993) and Madden & Mackie (1989). Linear conjugate gradient
employed in the inversion algorithm. This check provides(CG) methods were employed to minimize the data misfit by
independent verification of the scheme since the two forwardapproximating it with series of convex quadratic models. By
modelling algorithms are prone to different types of numericalcarefully implementing the CG algorithm, the difficulty of con-
error. We will also use this check to demonstrate the efficiencystructing, storing and solving a large and dense linear system of
of preconditioning.equations with expensive direct methods was avoided. The CG

technique belongs to a class of iterative gradient methods that

are computationally efficient for solving large-scale optimization

problems because of their minimal storage requirements and THE 3-D MAGNETOTELLURIC FORWARD
the simplicity of their iteration. PROBLEM

Another critical strategy was the introduction of finite
An important consideration in solving the 3-D MT inverse

difference modelling techniques to simulate efficiently MT fields,
problem is that the forward modelling solution must be able

sensitivities and functional gradients arising from complex 3-D
to simulate correctly the responses arising from realistic 3-D

geology. Over the last 10 years, 3-D MT finite difference
geology. Parametrizations of hundreds of thousands of cells are

modelling has matured and is now very well accepted within
typically required for these types of numerical simulations, and

the MT community (cf. Smith 1996a; Weidelt 1995; Mackie
finite difference modelling techniques, as already mentioned,

et al. 1993; Madden & Mackie 1989).
are very efficient for the task and will be employed here.

The encouraging results of Mackie & Madden (1993) and
Assuming a harmonic time dependence of eivt, where i=√(−1)

Madden & Mackie (1989) have motivated us to consider non-
and v is the angular frequency, the electric field, E, satisfies

linear optimization techniques for solving the 3-D MT inverse the vector equation
problem. We are interested in investigating such techniques to

see if they are competitive with the linearized CG approach V×m
0
/mV×E+ ivm

0
sE=0 . (1)

by sharing its key efficiencies and because they can be quite

effective in dealing with the non-linear nature of the inverse In this expression the electrical conductivity and magnetic
problem. A survey of the non-linear optimization literature permeability are denoted by s and m, respectively, and m0 is
indicates that two iterative gradient methods, limited memory the magnetic permeability of free space. Dirichlet boundary
quasi-Newton and non-linear conjugate gradient (NLCG), conditions are applied to eq. (1), where the tangential electric

field boundary values are specified. These boundary valuesappear to be promising candidates (Nocedal 1996; Gill et al.
arise from a plane wave, with a given source field polarization,1981). Here we will focus on the NLCG method because of
propagating in layered or 2-D geological media assigned atits minimal storage requirements.
the boundaries of the 3-D problem.When Rodi & Mackie (2000) applied the NLCG method to

When eq. (1) is approximated with finite differences using athe 2-D MT inverse problem, they obtained impressive results,
Yee (1966) staggered grid (Fig. 1) and symmetrically scaledincluding a significant reduction in the number of forward
(cf. Alumbaugh et al. 1996; Newman & Alumbaugh 1995), amodelling applications. When the NLCG method is applied
linear system results:to the 3-D problem, we will show that only six forward

modelling applications per frequency are usually required for
KE=S . (2)the problem at a given iteration. Compared with competing

formulations, we believe the scheme requires the fewest number
The matrix K is complex-symmetric and sparse with 13 non-

of forward modelling applications per iteration. However, the
zero entries per row, and S is the source vector that depends

question also rests on the total number of forward modelling
on the boundary conditions and source field polarization. This

applications needed over the entire inversion run and not just
system can be efficiently solved using the quasi-minimum

at a single iteration. If the NLCG method converges slowly,
residual (qmr) method, which belongs to the class of Krylov

then the method’s efficiency per iteration is irrelevant. Thus it
subspace techniques that are highly efficient in iteratively solving

is also important to find an effective preconditioner to speed
sparse linear systems. The reader is referred to Alumbaugh

up the convergence rate of the method in a global sense, as
et al. (1996) and Newman & Alumbaugh (1995) for details on

Rodi & Mackie (2000) demonstrated for the 2-D problem.
how this solution is implemented. Once the electric fields have

Nevertheless, the complexity and realism of the images that been determined on the mesh, the magnetic fields, H, can be
can be produced by such a scheme is still limited by the speed determined from Faraday’s law,
and memory of serial processors. To overcome this barrier,

parallel computers, where tens to thousands of processors H=V×E/(−ivm) , (3)
operate on the problem simultaneously, can be employed,

resulting in a significant reduction in execution times and a by numerically approximating the curl of the electric field at
corresponding increase in model complexity. various nodal points. One can then interpolate either the

In this paper, a parallel 3-D MT inverse solution will be electric or the magnetic field nodal values to the point of
interest. Based on 3-D model comparisons with the integralformulated using preconditioned non-linear conjugate gradients.
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Figure 1. Mesh and staggered grid imposed upon the earth model to simulate 3-D MT fields. In the finite difference solution, the electric fields

are sampled along cell edges and magnetic fields implicitly along the cell faces, where conductivity and permeability values are assigned to each cell.

equation solution of Xiong (1992), we estimate the error of difference between the measured and predicted data). We divide

the Earth into M cells and assign to each cell an unknownthe finite difference solution to be about 1 per cent in apparent
resistivity and 1 degree in phase, for properly designed meshes. conductivity value; the magnetic permeability, m, is assumed

to be constant within the Earth and is set to its free-spaceEven with the benefits of a staggered grid, which implicitly

enforces the divergence-free conditions on the fields, it is often value from here on. Further, let m be a vector of length M that
describes these values. We now form an objective functional,necessary to explicitly enforce these conditions, where
which combines the data error and model smoothness constraintVΩsE=0 (4)
in the following fashion:

and

Q= ∑
2N

n=1
[(Z

n
obs−Z

n
)/e
n
]2+lmTWTWm , (6)VΩE=0 (5)

in the Earth and air, respectively. This is accomplished in the where T denotes the transpose operator. In eq. (6), the terms
numerical solution through a static divergence correction as that describe the observed and predicted data (magnetotelluric
frequencies approach the static limit. This correction, developed impedances), Z

n
obs and Z

n
, are split into their real and imaginary

by Smith (1996b), can drastically reduce the time needed to parts. The summation over the first N data points is for the
solve eq. (2). It is implemented by adding a term to the electric real parts of the impedance, and summation over the last N
field such that eqs (4) and (5) are periodically satisfied during data points is for the imaginary parts. The impedance can be
the iterative solution of eq. (2). any particular component of the impedance tensor at any

given measurement location, where the tensor is given by

THE 3-D MAGNETOTELLURIC INVERSE
PROBLEM Z=AZ

xx
Z
xy

Z
yx

Z
yy
B . (7)

Regularized least squares
Components of the tensor, which are complex, depend on the

subsurface conductivity, and relate the measured horizontalAll least-squares solutions begin by minimizing the difference
between observed and predicted data, often subject to a electric and magnetic fields to each other. For example,

E
y
=Z

yx
H
x
+Z

yy
H
y
gives the contribution to the y-componentconstraint, which is employed to stabilize the inversion process.

In the problem considered here, the inverse solution is con- of the electric field arising from the x- and y-components of
the magnetic field. Thus, for the horizontal components of thestrained by Tikhonov regularization to remove its ill-posed

nature (Tikhonov & Arsenin 1977). Regularization imposes electric and magnetic field, Eh= (E
x
, E

y
)T and Hh= (H

x
, H

y
)T,

we have in general the relation Eh=ZHh . We also weight thean additional constraint on the model: reconstructions are
required to be smoothed versions of the Earth’s electrical data misfit in eq. (6) by the data error, e

n
, so that noisier data

have less influence on Q.conductivity, at the expense of an increase in the error (the
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The parameters that control model smoothness are the
Algorithm flowchartregularization matrix, W, which consists of a finite difference
(1) set i=1, choose initial model m

(i)
and computeapproximation to the Laplacian (V2 ) operator, and the

r
(i)
=−VQ(m

(i)
)regularization parameter l, which is used to control the amount

(2) set u
(i)
=M

(i)
−1r

(i)of smoothness to be incorporated into the model. Care needs
(3) find a

(i)
that minimizes Q(m

(i)
+a

(i)
u
(i)

)to be taken in selecting this parameter. Large parameters will
(4) set m

(i+1)=m
(i)
+a

(i)
u
(i)

and r
(i+1)=−VQ(m

i+1))produce highly smooth models, but often these models do not
(5) stop when |r

(i+1) | is sufficiently small, otherwise go tofit the data. Small parameters give superior data fits but the
step (6)

resulting models can be too rough and non-physical. Our
(6) set b

(i+1)= (r
(i+1)TM

(i+1)−1r
(i+1)−r

(i+1)TM
(i)
−1r

(i)
)/

strategy is to run the inversion using several fixed values of l
(r
(i)
TM

(i)
−1r

(i)
)

and select the model that provides an acceptable match to the
(7) set u

(i+1)=M
(i+1)−1r

(i+1)+b
(i+1)u(i)data within observational errors and yet yields the smoothest

(8) set i= i+1 and go to step (3)
model. Because we plan to employ the non-linear conjugate

gradient method to minimize the objective functional, l should
For now we define M

(i)
−1 and M

(i+1)−1 as identity matricesnot be varied during the iteration procedure. To do so changes
for all i, with units of S2 m−2, given that the objective functionalthe definition of the objective functional as it is being minimized
in eq. (6) is dimensionless. We will redefine these matrices laterand would, in theory, invalidate the information determined
when preconditioning is discussed. To use the NLCG method

from previous inversion iterations needed for computing the
sensibly requires that we carefully implement two calculations

descent direction needed for the next model update. If l were
of the procedure efficiently. These are (1) calculate the gradient

to be changed, it would be necessary to reinitialize the inversion
of the objective functional and (2) find the value of a that mini-

procedure using the steepest descent direction, thereby discarding
mizes the expression Q(m+au) for specified model parameters

any information on prior descent directions, and use the model m and a given conjugate search direction u.
determined from the previous iteration as the new starting

model. Note that these restrictions on l are not necessary
Computation of the gradientswhen linearized update methods are applied to the problem,

where l can be varied between updates (cf. deGroot-Hedlin & The gradient of the objective function in eq. (6) is formally
Constable 1990). written as

In small-scale inverse problems it may be feasible to deter-
VQ=VQd+lVQm , (8)mine the global minimum of eq. (6) with a brute force search

in parameter space. For large-scale problems, as considered where Qd , Qm are functionals that relate to the data misfit and
here, this is not an option. Instead, what is typically done is the model smoothness constraint, respectively. Evaluation of

VQm leads immediately toto set the gradient of the objective functional, VQ, with respect

to the model parameters to zero and find by some economical VQm=2WTWm . (9)
means those model parameters that satisfy a critical point. It

To compute a specific element of VQd , we redefine theis a well-known fact, however, that this critical point could be
observed and predicted impedances and their weighted differencea local rather than a global minimum because we are solving
in eq. (6) to be complex quantities, wherea non-linear inverse problem. Moreover, we need to ensure

that VQ=0 actually defines a minimum instead of a saddle Z
n
obs=Z

n
obs+ iZ

n+Nobs ,point. This can be accomplished with second-derivative tests,
Z
n
=Z

n
+ iZ

n+N (10)
which verify that the Hessian of the objective functional is

symmetric positive definite at the critical point. Because the and

predicted impedances depend on the model m in a non-linear
DZ

n
=(Z

n
obs−Z

n
)/e
n
2+ i(Z

n+Nobs−Z
n+N )/e

n+N2 .fashion, we will be required to solve VQ=0 using an iterative
Hence, for the kth model parameter we would havemethod. From our prior discussions, the non-linear conjugate

gradient method is efficient for this task.
∂Qd/∂mk

=−2Re ∑
N

n=1
(DZ

n
)*∂Z

n
/∂m

k
, (11)

where * indicates complex conjugation. In Appendix A, follow-

ing Rodi (1976), sensitivity elements for the impedance tensorNon-linear conjugate gradients
are shown to be

The method of steepest descent is the easiest understood and

simplest to implement of the gradient methods. Unfortunately

it usually converges very slowly in practice. A better approach

is the method of non-linear conjugate gradients, first proposed

∂Z
xxj

/∂m
k
=−1g

j
T
xx

K−1(∂K/∂m
k
E
1
)−2g

j
T
xx

K−1(∂K/∂m
k
E
2
) ,

∂Z
xyj

/∂m
k
=−1g

j
T
xy

K−1(∂K/∂m
k
E
1
)−2g

j
T
xy

K−1 (∂K/∂m
k
E
2
) ,

∂Z
yxj

/∂m
k
=−1g

j
T
yx

K−1(∂K/∂m
k
E
1
)−2g

j
T
yx

K−1 (∂K/∂m
k
E
2
) ,

∂Z
yyj

/∂m
k
=−1g

j
T
yy

K−1 (∂K/∂m
k
E
1
)−2g

j
T
yy

K−1(∂K/∂m
k
E
2
) .

by Fletcher & Reeves (1964) for non-linear optimization, and

later improved by Polyak & Ribière (1969). The method is

closely related to the linear CG method of Hestenes & Stiefel
(12)(1952) and is identical if the objective functional is quadratic

and exact line searches are made with the NLCG algorithm. These sensitivities quantify small changes in the tensor elements
Shown below is a flowchart of the Polyak & Ribière algorithm, at location j due to small changes in the kth model parameter.

K−1 denotes the inverse of the finite difference stiffness matrixwhich will be used in the analysis.
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414 G. A. Newman and D. L . Alumbaugh

employed in the solution of the forward problem in eq. (2) and and computes the projected gradient using a finite difference

approximation. Let m denote the point in model space wheredepends implicitly on frequency. The electric fields, E1 and E2 ,
in eq. (12) are also determined from the forward problem; they we evaluate the gradient. Choose a small scalar h and a

random vector p, of unit length, such that the elements of pprovide the two source polarizations necessary to define the

impedance tensor at each frequency. The eight vectors are all similar in magnitude. It should then hold that the
gradient projected along the direction p will approximately(1g

j
T
xx

, 2g
j
T
xx

, 1g
j
T
xy

, 2g
j
T
xy

, 1g
j
T
yx

, 2g
j
T
yx

, 1g
j
T
yy

, 2g
j
T
yy

)
specified in Appendix A are linear combinations of vectors satisfy

that interpolate electric and magnetic fields for the two source
(VQd)Tp#[Qd(m+hp)−Qd (m)]/h . (21)polarizations from the forward modelling finite difference grid

to the receiver site at location j. A series of tests showed agreement to within 1 per cent when
Combining eqs (11) and (12) we have eq. (13) was substituted into the left-hand side of eq. (21).

∂Qd/∂mk
=2ReC ∑

N

n=1
(DZ

n
)*1g

n
TK−1(∂K/∂m

k
E
1
)

The line search

A line search is needed to find a that will minimize Q(m+au).+ ∑
N

n=1
(DZ

n
)*2g

n
TK−1 (∂K/∂m

k
E
2
)D , (13)

There are a number of strategies to carry out the line search,
where the number of forward modelling applications varies.

where the vectors, 1g
n
T and 2g

n
T are determined by selecting

An economical approach, employed here and presented in
from eq. (12) the component of the impedance that is being

detail in Appendix B, is to find a such that Q(m+au) is
treated according to the summation index. For example, if we

decreased sufficiently along the search direction u. Quadratic
are treating Z

xyj
as the nth data point, then 1g

n
T=1g

j
T
xy

and
curve fitting is also employed in an attempt to refine a so2g

n
T=2g

j
T
xy

.
that an even greater reduction in Q is possible. Here, we

It can be shown that the number of forward solutions needed
use functional and derivative information at one point and

to evaluate the gradient in eq. (13) is four per frequency. We
functional information at another, and then fit a quadratic

define one forward problem at each distinct frequency and
through these points to estimate the step to the minimum.

mode since eq. (2) is solved separately for these quantities.
Since objective functional and gradient information is already

Thus, two forward solutions are required to obtain the electric
available at the descent point m from the prior NLCG

fields E1 and E2 and two additional forward solutions are
iteration, we only need to evaluate Q at the second point along

needed to compute the fields arising from the following source
the direction of descent. Thus, the cost of the quadratic line

distributions at each frequency:
search is two additional forward modelling applications per
frequency. While it may seem preferable to use higher-order1gT=−2 ∑

N

n−1
(DZ

n
)*1g

n
T (14)

polynomial interpolation (e.g. cubic) to refine the line search,
this can be expensive because it incurs additional functional

and
and possible gradient evaluations (cf. Acton 1990). A good

preconditioner can help to compensate for the approximate2gT=−2 ∑
N

n−1
(DZ

n
)*2g

n
T . (15)

line search procedure employed here without recourse to
additional forward modelling and is discussed below.Thus if we set

If the functional increases at the estimated minimum point,
1vT=1gTK−1 (16) a backtracking strategy is invoked from this point until a

sufficient decrease in the functional is observed. Backtrackingand
can be done because u is a descent direction, since uΩVQ<0

2vT=2gTK−1 , (17) at Q(m). We have found in practice that backtracking is
typically not required in our scheme.we are then required to solve the two following forward

problems:

PreconditioningK 1v=1g (18)

The findings of Rodi & Mackie (2000) showed that convergenceand
rates for the 2-D MT inverse problem using non-linear conjugate

K 2v=2g . (19)
gradients can be significantly improved with preconditioning.

Nevertheless, as Nocedal (1996) pointed out, the use of aHere we utilized the fact that KT=K. In solving these forward
preconditioner with a NLCG scheme can result in a conjugateproblems we also employ the static divergence correction to
search direction no longer being a descent direction andaccelerate their solutions at the lower frequencies. Here eq. (4)
requires reinitializing using the steepest descent direction,is modified to
which severely impairs the algorithm’s efficiency. Whilst it isVΩsE+VΩJ=0 , (20)
possible to take precautions to prevent this by ensuring that

the preconditioner is positive definite, the use of an approxi-where J is the source current density given by either 1g or 2g.
Additional details of the modified static divergence procedure mate line search procedure, as used in this paper, can still

produce a search direction that is not a descent direction. Incan be found in Newman & Alumbaugh (1996) and Alumbaugh

& Newman (1996). spite of these dangers, an effective and robust preconditioner
is important, since it could significantly reduce solution runWe verified the accuracy of eq. (13) by performing a simple

test proposed by Gill et al. (1981). This test is straightforward times for the 3-D problem.
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The convergence of the NLCG method can be accelerated each iteration of the procedure, 3-D forward modelling con-

tinues to be a bottleneck in achieving acceptable run times.by choosing a preconditioner M
(i)

that approximates the
Hessian of the objective functional, where M

(i)
−1 requires The expensive components of the procedure, functional gradients

and objective functional evaluations, are traced to the timeminimal storage and M
(i)
−1r is easy to compute. M

(i)
can be

fixed or updated at each iteration of the procedure. We prefer required to solve the 3-D forward problem. This is also
compounded because multiple inversion runs are needed toto update M

(i)
, because the Hessian is not constant, except for

points near the minimum of the objective functional. When the determine the optimal trade-off parameter and sometimes the

correct data weighting. Therefore, any reduction in forwardHessian is constant the objective functional can be represented
by a quadratic function in the model parameters. modelling run times would have a corresponding impact in

reducing solution times for the inversion. Another difficultyWhilst it is too expensive to compute or approximate the full

Hessian, it is possible to compute its diagonal for use as a pre- with forward modelling is that to model a full 3-D MT survey
realistically over all frequencies and spatial locations may inconditioner. This information is accessible from computations

involved in the NLCG iteration. Using a quasi-Newton formula, some instances require a forward model parametrization of

over a million cells, which is impractical on serial workstations.known as the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
update (cf. Dennis & Schnabel 1996), we derive a recurrence To alleviate these difficulties we have implemented the

inversion scheme to run on a parallel computing platform.relation for the diagonal of the Hessian even if its off-diagonal

components are unknown. The diagonal is given by These platforms allow tens to thousands of processors to
operate on the problem simultaneously and significantly reduce

M
(i+1)=M

(i)
+VQ(m

(i)
)VQ(m

(i)
)T/VQ(m

(i)
)Tu

(i) the solution time and greatly increase the complexity and

realism of the geological models. Such platforms allow an+y
(i)

y
(i)
T/a

(i)
y
(i)
Tu

(i)
, (22)

entire 3-D MT data set to be analysed concurrently, instead
with y

(i)
=VQ(m

(i+1) )−VQ(m
(i)

). The use of this update as a
of partially. In using these machines a given number of

diagonal preconditioner in the NLCG inversion scheme is
processors are assigned to each coordinate direction (nx in x,

justified because in the quadratic case with exact line searches
ny in y and nz in z) of the model. The total number of

identical search directions are generated by the BFGS and
processors employed is equal to nx×ny×nz. Since each

NLCG algorithms (Gill et al. 1981). Additional justification
processor only needs to make calculations for a subset of the

that eq. (22) should be an effective preconditioner comes from
forward and inverse problem grids, and because the processors

the optimization literature, where the Newton search direction,
are making their calculations in parallel, the solution time is

s=M
(i)
−1r, if practical to compute, is the optimum choice for

reduced by a factor approximately equal to the number of
functional minimization. Since full evaluation of M

(i)
−1 is not

processors employed.
realistic, its evaluation using only diagonal entries is an obvious

Newman & Alumbaugh (1997) and Alumbaugh et al. (1996)
choice. Thus the effect of the preconditioner on the NLCG

showed how to implement inverse and forward problems
scheme is to attempt to make it behave more like Newton’s

on parallel platforms for controlled-source electromagnetic
method. When M

(i+1) is updated from eq. (22) it is important
applications. Generalization to the MT problem is a straight-

to ensure that it is positive definite so that the search direction
forward extension and the interested reader is referred to these

determined from the preconditioned NLCG algorithm is a
papers for the additional details. Currently the MT inversion

descent direction. Therefore, whenever any diagonal entry of
scheme has been implemented on the 9000-processor Teraflop

M
(i+1) is negative, it is not updated. Note also that at the first

machine available at Sandia National Laboratories. Preliminary
iteration M(1) is set to the identity matrix.

analysis of a large field data set shows the advantages of a

parallel version of the scheme, where 28 224 model parameters
were estimated using approximately 13 000 data points. ALogarithmic parameters
42-fold increase in speed was observed when 512 Pentium II

Inverting for logarithmic parameters is desirable since it restricts
processors were applied to the problem compared to a single-

the parameters to be positive quantities, which is a physical
processor IBM RS-6000 590 workstation (one inversion iter-

requirement for the electrical conductivity. Reformulation
ation required nearly 16 hr on the IBM). If 1000 processors

of the inverse problem for logarithmic parameters with
are employed the speed-up approaches two orders of magni-

lower bounds requires that elements of m be redefined as
tude. Note that the processor speed on the IBM workstation is

m∞
k
=ln[(m

k
− lb

k
)/m0] in eqs (6) and (9), where m

k
>lb

k
, with

roughly comparable to eight Pentium II processors.
lb
k
>0 (Newman & Alumbaugh 1997) and m0=1 S m−1. The

gradient in eq. (11) is also modified to read
SYNTHETIC EXAMPLE

∂Qd/∂m∞
k
=−2Re ∑

N

n=1
(m
k
− lb

k
)/m

0
(DZ

n
)*∂Z

n
/∂m

k
. (23)

We have selected a synthetic example that will test the robust-
ness of the inversion scheme in the presence of near-surface

A corresponding modification also applies to eq. (13). Once m∞
k statics as well as demonstrate the benefits of preconditioning.

is updated in the NLCG iteration, the parameter components
This uses a data set produced by the integral equation model-

that are of interest follow from the expression
ling code of Xiong (1992) and also provides an independent

m
k
=m

0
em∞

k
+ lb

k
. (24) check on the forward solution. Data simulated with an integral

equation code are susceptible to different types of numerical
errors from the finite difference technique, which is employed

PARALLEL IMPLEMENTATION
within the inverse solution.

Consider the 3-D model in the leftmost column of Fig. 2. TheIn spite of the aforementioned efficiencies of the NLCG method
in limiting the number of forward modelling applications at model represents a 0.1 S m−1 cube embedded in a 0.01 S m−1
© 2000 RAS, GJI 140, 410–424
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half-space. The horizontal and vertical dimensions of the body The model in Fig. 2 for l=30 shows that we have recovered

are 200 m on a side. Its depth of burial is 100 m. Two near- information on both near-surface bodies. Not shown, however,
surface bodies (one conductive and the other resistive) have is the image illustrating that the near-surface bodies have
also been included in the model to demonstrate the inversion been projected onto the Earth’s surface. Because the highest-
code’s capability to invert data that are affected by static frequency component in the data set is only 4 kHz, this
shifts. Here the depth of burial and extent of the near-surface frequency is insufficient to resolve the true depths of the near-
conductor are both 10 m. For the resistor they are 10 and surface bodies, since the skin depth is 79 m in 0.01 S m−1
50 m, respectively. However, the finite difference mesh does material. We have also recovered information on the deeper
not coincide exactly with the edges of the bodies in the model; conductor’s geometry (depth of burial and depth and lateral
offsets as large as 5 m occur between the mesh and the edges extents). The maximum conductivity estimates, however, are
of the near-surface bodies. This supplies an additional realistic about a factor of two too small due to the size of the trade-
check on the inversion scheme as in the field it is generally off parameter imposed in the solution when compared with
impossible to align the mesh exactly with geological features. solutions that use smaller parameters below.

121 MT soundings at 16 frequencies, ranging from 4000 to The models obtained with the smaller trade-off parameters
4 Hz, were simulated using the integral equation solution of in Fig. 2 are rougher and show more variability in the con-
Xiong (1992); each sounding provides all four elements of the ductivity structure, as expected. Nevertheless, the models also
impedance tensor. The receivers are located at the Earth’s show evidence of the near-surface structures. The presence of
surface (z=0 m) and are uniformly spaced at 50 m intervals the deeper conductor is also clearly indicated, but the maxi-
in both the x- and y-coordinate directions, ranging from −250 mum conductivity estimates are a factor of two too large. The
to +250 m. Thus the total number of data points (real and conductivity estimates indicated by the red coloured cells for
imaginary) used in the test is 15 488. Gaussian random noise these models range between 0.2 and 0.08 S m−1. An interesting
was added to the data at the 1 per cent level. The data weights difference between these two models is the estimated depth
assumed in the inversion process are based on 1 per cent of to the base of the deeper conductor. The model along the
the impedance of a 0.01 S m−1 half-space. Y –Z cross-section, with l=3, shows the conductor to extend

The mesh has been designed to increase with depth, approxi- to 500 m depth compared to 400 m depth when l=0.3.
mately on a logarithmic scale, reflecting the loss of resolution This difference can be explained with the number of NLCG
with depth, which is an inherent limitation of the MT method. iterations employed to construct the respective models. 50
A fine mesh was also employed in the near surface because of iterations were used to obtain the model for l=3, whereas
the near-surface bodies. Overall 2548 and 28 224 cells were used

27 iterations were used for the model with l=0.3. At the 20th
to represent the respective inversion and forward modelling

iteration, when l=3, the base of the deeper conductor is better
domains. The inversion domain is a rectangular block, 600 m

resolved, as is its conductivity (Fig. 4). This indicates that the
in the horizontal directions and 500 m in the vertical direction,

benefit of a small reduction in the error level at the later
extending downwards from the Earth’s surface. It is a subset

iterations can be offset by extraneous structure in the final
of the forward modelling domain used to compute functional

image. It could also indicate that the inversion process is
gradients and predicted data and is 1000 m on a side. The

actually fitting noise in the data, which is not indicated in
inversion started from a 0.01 S m−1 half-space and a lower

Fig. 3, since the objective function and squared error lie above
bound constraint on the conductivity was set at 10−5 S m−1.

the desired target misfit.
To invert the data set successfully required 6 hr of CPU time

The failure to achieve the target misfit in Fig. 3 for all three
per inversion iteration on the IBM workstation. This compared

regularization parameters is of some concern. Newman &
with 30 min for 125 nodes on the Teraflop machine, which is

Alumbaugh (1996) found a similar result when invertingmore than an order of magnitude faster.
controlled-source crosswell electromagnetic data generated byThree separate inversion runs with preconditioning were
the integral equation technique. They attributed the discrepancycarried out for three different trade-off parameters of l=30, 3
to numerical differences between the forward modelling schemesand 0.3. The corresponding conductivity models are shown in
employed to generate synthetic data and that employed withinFig. 2. The inversions producing these images were terminated
the inversion. Recall that we estimate the error between theat different iterations in Fig. 3 to study how small error
two forward modelling approaches to be about 1 per cent. Toreductions at the later iterations affect the final model. For
test this hypothesis we repeated the inversion with 5 per centnone of the three different regularization parameters (30, 3
noise added to the data for a regularization parameter of 3.and 0.3) were we able to reduce the objective functional and
Because the solution converged to only a slightly reducedsquared error (data misfit) to the assumed noise level in Fig. 3.
objective functional value and squared error (Qd), which wereThis will be discussed in more detail below. We have also
still above the target misfit, we do not believe that this entirelyincluded the squared error plot in Fig. 3 to examine the quality
explains the observed phenomena. Another possible explanationof the fit between the observations and the predicted data.
is that we cannot properly solve for the static effects causedBecause of the regularization term, the objective functional is
by the two near-surface bodies as the inversion grid is notlarger than the squared error after the first inversion iteration
exactly aligned with the boundaries of these targets. Finally, itand is a biased measure of the data misfit. On the other hand,
may simply be that as we approach the minimum, the con-it is the quantity that is actually being minimized by the
vergence becomes very slow, reminiscent of the steepest descentinversion process. It is interesting to note that at the terminal
method, which the NLCG technique should in theory over-stages of the inversion process, the objective functional is mono-
come. More probably it is a combination of all three of thesetonic in the trade-off parameter; smaller trade-off parameters
factors. This is supported by a test where synthetic data wereproduce smaller values in the objective functional. However,

this is not necessarily the case with the squared error. generated for the deeper body only, using the finite difference
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quantities are 3-D indicators, which vanish over 1- and 2-D

geological structures.

In Fig. 6, we compare the convergence rate for the case l=3

with and without preconditioning. Preconditioning is found to

be beneficial, as far fewer iterations are necessary to drive the

objective functional and squared error to a given level at the

later iterations, compared with a solution that does not use it.

The final error level for the solution without preconditioning

required 33 iterations This same error level was achieved in

only 20 iterations when the preconditioned form of the solution

was employed. The model obtained without preconditioning

is shown in the rightmost column of Fig. 4 and should be

compared directly with the model in the centre column. In this

example, the model obtained through preconditioning resolves

the deeper conductor somewhat better.

From these results, it is clear that the diagonal components

of eq. (22) are an effective preconditioner for the test example.

Curvature information built up by eq. (22) scales and steers

the conjugate search direction to be a better prediction of the

minimum. It is in the later stages of the inversion procedure

that the benefits of preconditioning become obvious. This

comes as no surprise, since eq. (22) will converge to the Hessian

of the objective functional close to the minimum. Nevertheless,

our findings on effective preconditioners for the 3-D inverse

problem are preliminary. Rodi & Mackie (1998) have shown

that for the 2-D problem a fixed preconditioner is very effective;

we found this type of preconditioner ineffective for the 3-D

scheme presented here. Thus, we believe additional research is

needed on effective preconditioners for the 3-D problem.

DISCUSSION

It is worthwhile and enlightening to compare the number of

forward modelling applications necessary to solve the 3-D MT

inverse problem using linear and non-linear conjugate gradients.

If a 3-D algorithm of the type discussed in this paper is used

to compute the solutions to the forward problem, Mackie &

Madden (1993) show that a linear CG scheme needs six forward

modelling applications per frequency at the first relaxation

step. Subsequent steps require four forward modelling appli-Figure 3. Plots of solution convergence (objective functional and
cations per frequency. If the number of linear relaxation stepssquared error) for three different trade-off parameters of 30, 3 and 0.3.
becomes excessive, we estimate greater than three, then anThe difference between the objective functional and squared error plots

is that the former includes the regularization term. As expected, a NLCG scheme should be very competitive. If on the other
trade-off parameter of 0.3 produces the smallest realization of the hand fewer steps are necessary to produce an accurate model
objective functional at the terminal stages of the inversion process. In update, the computational advantage would favour a linear
contrast, l=3 produces the smallest squared error measure.

CG implementation. Moreover, in the case of an objective

functional exhibiting quadratic form, there would be no need

to even consider a NLCG scheme. The key point is that the

objective functional in eq. (6) can be non-quadratic and thescheme as employed in the inversion routine. Although con-
linear method could require many model updates along withvergence to the target noise level was achieved, it still took
many relaxation steps at each update to achieve a minimum.over 50 inversion iterations to obtain this result. Nevertheless
In this event, a significant forward modelling expense wouldthe solution appears to be converging in Fig. 3, even though
be incurred, making a preconditioned NLCG scheme a muchnot to the desired target misfit. Moreover, a comparison
more efficient choice. One could reasonably argue, however,between observed and predicted impedances, corresponding to
that an implementation of the NLCG algorithm with approxi-the model in the middle column of Fig. 4, shows very good
mate line search procedures, as employed in this paper, mayagreement in all four impedance components. This is illustrated
obviate this advantage. It would take a direct comparisonin Fig. 5 at 40 Hz; similar agreement is also observed at other
between the non-linear and linear algorithms over a series offrequencies. We find the agreement between the diagonal tensor

elements (Z
xx

and Z
yy

) especially encouraging given that these test models to determine if and when this is the case.
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drawback to this type of line search is that a search direction

can be produced that is no longer a descent direction (Gill

et al. 1981) and requires restarting the algorithm with the

steepest descent direction. A remedy for this situation, which
is under current investigation, is to use a more elaborate

line search procedure, at the expense of more functional

evaluations, when it is determined that a quadratic model

poorly approximates the objective functional.
In forthcoming papers we will apply the 3-D MT inversion

scheme to field data sets. Exciting applications exist in marine

magnetotellurics for oil prospecting (cf. Constable et al. 1998;

Hoversten et al. 1998), mining and geothermal exploration,
and deeper crustal and mantle investigations. We will also

initiate a study on the validity of 2-D MT inversion over 3-D

geological structures. This study will hopefully help to clarify

when 3-D inversion is required.
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which are identical to expressions derived directly for the 2-DAPPENDIX A: SENSITIVITY ELEMENTS
MT problem.FOR THE MT IMPEDANCE TENSOR

The sensitivities in eq. (A2) involve partial derivatives of the
In order to derive the sensitivities, we need the predicted electric and magnetic fields. Following the ideas of Rodi
impedance tensor, where two orthogonal source polarizations (1976) we can relate these derivatives to the forward problem.
are required. Following Mackie & Madden (1993), let the Consider as an example the x-component of the magnetic field
electric and magnetic fields for the two polarizations be denoted at location j for a given source polarization, which can be
by E

x1
, E

y1
, H

x1
, H

y1
and E

x2
, E

y2
, H

x2
, H

y2
. Thus represented from Newman & Alumbaugh (1997) as
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E . (A5)

In this expression E is an electric field vector arising from a

3-D earth model for a specific source polarization and has
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(A1)
dimensions of NT×1, where NT represents the number of
electric field unknowns that are determined from the finite
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difference forward solution. The vector hgT
j(x)

is an interpolator

vector for the x-component of the magnetic field at the jth
measurement point and is of dimension 1×NT (T here
denotes the transpose operator). This vector will interpolate
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the sampled fields on the forward modelling grid to the
measurement point and numerically includes a curl operator
that is applied to the electric field. With this definition an

element of the Jacobian matrix is written for the x-component
of magnetic field as

(A10)
∂H

xj
/∂m

k
=hgT

j(x)
∂E/∂m

k
. (A6)

The eight vectors in eq. (A10) can be interpreted as generalized
From the forward problem, the electric fields are determined

interpolator vectors, which involve linear combinations of
from the linear system given by eq. (2). Thus differentiating

vectors that interpolate the electric and magnetic fields from
eq. (2) with respect to m

k
yields,

the forward modelling grid to the receiver at location j. These
latter vectors are weighted by the combinations of electric and∂E/∂m

k
=−K−1 (∂K/∂m

k
E ) , (A7)

magnetic fields produced by the different source polarizations.
and an element of the Jacobian matrix for the x-component
of the magnetic field is written as

APPENDIX B: THE LINE SEARCH
∂H
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k
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k
E ) . (A8) ALGORITHM

Similar expressions can be derived for the other electric and The line search procedure is to find a such that Q(m+au) is
magnetic field components. sufficiently decreased along the search direction, u. Quadratic

Using the above results, terms involving the electric and curve fitting is also employed in an attempt to refine a so that
magnetic field partial derivatives can be substituted for in an even greater reduction in Q is possible. To determine a let
eq. (A2) to yield us first normalize u so that

v=u/dud , (B1)

where dud is the Euclidean length, and define a∞=duda.
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The parameter a∞ has dimensions of S m−1, whereas a is

dimensionless. We are now required to find a∞ such that
Q(m+a∞v) is sufficiently decreased along the search direction,
v. Thus, the critical condition that a∞ must satisfy is(A9)

Q(m+a∞v)<Q(m)+da∞VQ(m)Ωv , (B2)where E1 and E2 are the two electric field polarizations needed
to define the impedance tensor and where d is a small positive constant that ensures a sufficient

decrease in Q(m+a∞v). The test in eq. (B2) is necessary since
the simpler test,

Q(m+a∞v)<Q(m) , (B3)

can lead to the possibility of oscillation about the solution
without convergence (Dennis & Schnabel 1996). In choosing
d we follow recent optimization literature and set d=10−4/a∞.
To launch the procedure we need to select a trial value for a∞
and carry out the test required by eq. (B2).
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Unlike Newton and quasi-Newton methods, which accept a

unit step (a∞=1) most of the time, it is common to see step
lengths that vary by one to two orders of magnitude with

NLCG methods (Nocedal 1996). Therefore, we resort to a
heuristic approach, which works well in practice for our
problem. For the kth model parameter, m

k
, and its perturbed

value, m
k
+Dm

k
, for some point along the descent direction, v,

we have, from eq. (23),
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Subtracting eq. (B5) from (B4) produces
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and solving for Dm∞
k

yields
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+1] , (B7)
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where ln denotes the natural logarithm. By selecting the model conditions must be met. The first is b>0, which ensures that

the quadratic model has positive curvature and a∞ defines itsparameter, mmax , that corresponds to the largest component
in v that satisfies the infinity norm, minimum and not its maximum, and the second that f (a∞) is

actually less than f1 by explicitly computing Q(m+a∞v). If
dvd

2
= max

1≤i≤M
|v
i
| , (B8)

b<0 or if f1< f (a∞), we set a∞=a∞trial and exit the line search
algorithm since we have already determined that a∞trial leads

we define the trial step based on eq. (B7) to be to a sufficient decrease in Q(m+a∞v).

If at the trial step f1 fails to satisfy eq. (B2), a quadratica∞trial= ln[(1.6mmax/m0
) e−m∞

max
+1] , (B9)

backtracking strategy is invoked from a∞trial until a sufficient
where mmax changes by a factor of 1.6. The factor 1.6 is decrease in f is observed. Backtracking is effective because
empirical and is based upon the numerical experiments, which v is a descent direction since g0=vΩVQ<0 at Q(m). The
always demonstrated a sufficient decrease in the objective quadratic formula used to backtrack is given by
functional (eq. B2).

f (x)= f
0
+g

0
x+cx2 , (B13)If eq. (B2) is satisfied with a∞trial , let f0=Q(m) and

f1=Q(m+a∞trialv) and employ a quadratic model to find an where
a∞ that leads to an even greater reduction in f . Four pieces of

c= ( f
1
− f

0
−g

0
a∞trial )/a∞trial2 , (B14)information are required to define the quadratic: the two

functional values Q(m) and Q(m+a∞trialv), a∞trial and the and the candidate step is determined to be
directional derivative g0=VQ(m)Ωv. Note that the directional
derivative and functional at the point m are available from a∞=

g
0
a∞trial2

2( f
1
− f

0
−g

0
a∞trial )

. (B15)
the prior NLCG iteration at no additional cost. Thus, if fmin
defines the functional minimum we are seeking, then

Note that the curvature, c, in eq. (B14) is always positive, hence
the quadratic model will always interpolate to a minimum. Forf (x)= fmin+b(x−a∞)2/a∞trail2 , (B10)
a∞ to be acceptable, we must verify that eq. (B2) is satisfied. If

where not, we set a∞trial=a∞ and continue backtracking until an
acceptable step is found.b= ( f

1
− f

0
)−g

0
a∞trial , (B11)

A danger of estimating a∞ using any type of polynomial
then the candidate step is given by approximation is that a∞ may be too near zero to be of much

use in reducing Q and the inverse solution can stagnate as
a∞=−g

0
a∞trial/2b<a∞max . (B12)

a result. Polynomial safeguarding prevents against this (cf.
Dennis & Schnabel 1996). When a∞<0.1a∞trial in any of theHere a∞max sets an upper bound on the step, such that m+a∞v

leads to a realizable model and does not leave the domain of quadratic modelling procedures discussed above, we always
set a∞=0.1a∞trial .interest. For the step in eq. (B12) to be acceptable, two
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